Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig
نویسندگان
چکیده
We consider the problem of detecting the true quantum state among r possible ones, based of measurements performed on n copies of a finite dimensional quantum system. A special case is the problem of discriminating between r probability measures on a finite sample space, using n i.i.d. observations. In this classical setting it is known that the averaged error probability decreases exponentially with exponent given by the worst case binary Chernoff bound between any possible pair of the r probability measures. Define analogously the multiple quantum Chernoff bound, considering all possible pairs of states. Recently it has been shown that this asymptotic error bound is attainable in the case of r pure states, and that it is unimprovable in general. Here we extend the attainability result to a larger class of r-tuples of states which are possibly mixed, but pairwise linearly independent. We also construct a quantum detector which universally attains the multiple quantum Chernoff bound up to a factor 1/3.
منابع مشابه
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Improved lower and upper bounds for entanglement of formation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Immunity space generated by a non trivial genetic - antigenic relation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Method for measuring the entanglement of formation for arbitrary - dimensional pure states
متن کامل
Discrepancy of Products of Hypergraphs
Discrepancy of Products of Hypergraphs Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, e-mail: [email protected] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, D-04103 Leipzig, e-mail: [email protected] Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011