Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig

نویسندگان

  • Arleta Szkola
  • Michael Nussbaum
چکیده

We consider the problem of detecting the true quantum state among r possible ones, based of measurements performed on n copies of a finite dimensional quantum system. A special case is the problem of discriminating between r probability measures on a finite sample space, using n i.i.d. observations. In this classical setting it is known that the averaged error probability decreases exponentially with exponent given by the worst case binary Chernoff bound between any possible pair of the r probability measures. Define analogously the multiple quantum Chernoff bound, considering all possible pairs of states. Recently it has been shown that this asymptotic error bound is attainable in the case of r pure states, and that it is unimprovable in general. Here we extend the attainability result to a larger class of r-tuples of states which are possibly mixed, but pairwise linearly independent. We also construct a quantum detector which universally attains the multiple quantum Chernoff bound up to a factor 1/3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011